If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-90=13m
We move all terms to the left:
m^2-90-(13m)=0
a = 1; b = -13; c = -90;
Δ = b2-4ac
Δ = -132-4·1·(-90)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-23}{2*1}=\frac{-10}{2} =-5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+23}{2*1}=\frac{36}{2} =18 $
| X/2-5x=23 | | -10g-7=-10g-2 | | 38x-12=25-4x | | 9+5g=15+3g | | 18+11r=14+9r | | 5(3x+9)-2x=15x-2x(x-5) | | 0.5x-0.7=8.3 | | (2x-30)+30=180-x | | -9+18z=7+18z+1 | | 20/p=2/10p= | | 16y-4y-1+3=-2y+16-y+1 | | 9+10y=10y+9 | | t-5.6=2.4 | | -4t-2=9-4t | | 8n+46-5n=-1+8n+2 | | 5x-10=3x+36 | | 4x+5(x+2)=109 | | -7-8w=-9-8w | | 4x²+11x-20=0 | | Z+3=5-3z | | 1+9j=9j+1 | | (14x+2)°=(17x-22)° | | 2s–86=s–15 | | -2(r+12)+15=17 | | 7f-1=-10+6f | | 7s-9=2s+16 | | Y/0.5=z | | 6(x+4)+10=22 | | 4x-16=84 | | 2(4-m)=4 | | −1+8a=−129 | | 3.2=4nn= |